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Abstract— Eating and drinking is an essential part of every-
day life. And yet, there are many people in the world today
who rely on others to feed them. In this work, we present
a prototype robot-assisted self-feeding system for individuals
with movement disorders. The system is capable of perceiving,
localizing, grasping, and delivering non-compliant food items
to an individual. We trained an object recognition network
to detect specific food items, and we compute the grasp
pose for each item. Human input is obtained through an
interface consisting of an eye-tracker and a display screen. The
human selects options on the monitor with their eye and head
movements and triggers responses with mouth movements. We
performed a pilot study with four able-bodied participants and
one participant with a spinal cord injury (SCI) to evaluate
the performance of our prototype system. Participants selected
food items with their eye movements, which were then delivered
by the robot. We observed an average overall feeding success
rate of 89.1% and an average overall task time of 31.4+2.4
seconds per food item. The SCI participant gave scores of
90.0 and 8.3 on the System Usability Scale and NASA Task
Load Index, respectively. We also conducted a custom, post-
study interview to gather participant feedback to drive future
design decisions. The quantitative results and qualitative user
feedback demonstrate the feasibility of robot-assisted self-
feeding and justify continued research into mealtime-related
assistive devices.

I. INTRODUCTION

According to the World Health Organization, there are
more than 1 billion people, or 15% of the world’s population,
living with some sort of a motor impairment [1]. Motor
impairments have been shown to have a significant effect
on an individual’s ability to perform activities of daily
living (ADLs), such as bathing, grooming, and feeding [2].
Commercially available assistive robot arms can help people
perform a wide range of ADLs on their own [3]. One of the
most highly rated ADLs by people with movement disorders
is the ability to prepare a meal and feed oneself [4]. Stand-
alone devices that are specifically designed for robot-assisted
feeding (RAF) include the Meal Buddy and the Obi Feeder
[51, [6].

While these commercial solutions have proven effective in
certain situations, they have a number of drawbacks. Assis-
tive robotic arms are effective for general purpose reaching
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and grasping tasks, but can be difficult to control. RAF
devices address this issue by constraining the application to
a mealtime setting. This allows for the design of more user-
friendly interfaces, but limits the usability of these devices in
different environments. Additionally, people may need help
to feed themselves due to a variety of movement disorders,
requiring the interface to be either heavily customized for
each individual, or robust enough to be usable by people
with different ability levels. In this work, we address these
needs by presenting methods for recognition, localization,
and grasping of food items on a table, a bi-directional
communication human-machine interface, and an initial eval-
uation of our prototype system. The quantitative results and
qualitative user feedback will inform future design decisions
to tailor the system to the needs of individuals with SCI.

II. RELATED WORK

Although there are many people who require help to feed
themselves, the body of literature on robot-assisted feeding
is relatively small. Perhaps the most notable RAF device
is the Assistive Dexterous Arm from the Personal Robotics
Lab [7]. This system consists of a wheelchair-mounted robot
arm commonly used by people with movement disorders.
Much of their research was focused on classification of food
items and grasping strategies, particularly motion planning
and utensil skewering forces [8].

Another group that developed a notable RAF system is the
HealthCare Robotics Lab, approaching the problem from a
caregiver’s perspective [9]. Instead of a wheelchair-mounted
robot arm, their design centered around a two-armed, mo-
bile household robot. The system was capable of scooping
deformable foods out of bowls, equipped with sophisticated
perception modules, and controlled via a custom graphical
user interface (GUI).

Both groups have investigated critical facets of the com-
plex area of robot-assisted feeding. Our design centers
around restoring function to the individual so that they are in
control over their meal, rather than a caregiver or robot. The
interface allows the user to communicate their intentions to
the system with naturally available command inputs, while
simultaneously receiving visual feedback from the device.
Above all, the user is in control of the most important
mealtime decisions, what to eat and when to eat it. By
gathering feedback from individuals with SCI, we hope to
uncover specific feeding tasks with which to drive the future
development of our system, so that it may best address the
needs of people with movement disorders.



III. METHODS
A. System Overview

The goal of our RAF system is to allow individuals with
movement disorders the ability to feed themselves. With
this in mind, the system consists of the following primary
components:

1) A method for perceiving and localizing food items

2) A mechanism to obtain and deliver the food items to
the human

3) An interface which facilitates bi-directional communi-
cation between the human and the device

The robot used in this work was the Baxter Research
Robot (Rethink Robotics; Bochum, Germany). We fixed an
L515 LIDAR camera (Intel; Santa Clara, California) on the
robot’s wrist using a custom, 3D-printed mount. A tablet
monitor was mounted to the table surface fit with a Tobii Eye
Tracker 4 device (Tobii; Danderyd, Sweden). We developed
a custom GUI application that displays the output from
the depth camera as well as different control options. The
user moves their eyes to select options on the tablet which
controls the robot to pick up and deliver the selected food
items. Internal communication was handled by the Robot
Operating System (ROS). An overview of the RAF system
is shown in Figure 1.

B. Object Recognition

To recognize food items on a plate, we used a seg-
mentation mask, regions-based convolutional neural network
(maskR-CNN) based on a ResNet+FPN backbone from de-
tectron2 [10]. The network was trained to detect four object
classes: 1) Carrot, 2) Celery, 3) Pretzel, and 4) Robot Gripper.
These items were chosen due to their uniform shape and non-
compliant material to reduce the complexity of grasping for
this proof-of-concept. The network takes the depth camera’s
RGB data stream as an input and returns bounding boxes and
instance level segmentation masks of each detected object
(Fig. 2). We collected and annotated 987 images for the

Fig. 1. Top-Down view of the robot-assisted feeding system. The human
is seated across the table from the robot. The user moves their eyes and
head to select options on the monitor which control the robot to interact
with food items.

TABLE I
OBJECT DETECTION DATASET DETAILS

Class Annotations AP
Carrot 1714 86.2
Celery 1383 92.0
Pretzel 1785 89.6
Gripper 598 86.6
Training Max Ite.rations: 50,000
Parameters Bat.Ch. SIZC‘Z S12
Training Time: = 10 hours

training set and 267 images for the test set. Details regarding
the dataset and training parameters can be found in Table
I. The network was trained on a GeForce RTX 3090 GPU
(NVIDIA; Santa Clara, California). Average Precision (AP)
values closer to 100.0 indicate better detection performance.

C. Table Plane Registration

We placed an AprilTag fiducial marker on the surface
of the table to define the table’s coordinate frame (Fig.
2). The tag is detected by the AprilTag 3 ROS package
[11]. We then performed a Direct Linear Transformation
(DLT) to map camera pixels (u, v) to table coordinates
in meters (x, y) [12]. In this method, the corners of the
tag are used as correspondence points. If the location of n
correspondence points are known in both the camera frame
and the table frame, the solution to a set of linear equations
is 2n DLT parameters P (1). These DLT parameters are then
used to transform any camera pixel location to planar table
coordinates (2), (3).
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D. Camera to Robot Calibration

The custom, 3D-printed mount which fixes the depth
camera to the robot’s wrist allows for tuning of the camera’s
angle (Fig. 3). To combat the need to frequently re-define the
camera pose, we developed a calibration procedure. First, a
food item such as a pretzel is placed on the table within
view of the camera. The centroid of the food item in table
coordinates (z, y), as well as the depth value (z) returned



Fig. 2. The object detection network returns bounding boxes and instance
segmentation masks for each food item. The fiducial marker is used to
transform the pixel coordinates into planar table coordinates.

from the depth camera is saved as O;. Then, the robot’s
gripper is manually moved to the center of the food item and
the position of the gripper in the robot’s frame (X, Y, Z) is
saved as Os. Finally, the transformation matrix (7") between
the camera’s frame and the robot’s frame is computed using
the methods described in S6derkvist, et al. for a minimum of
3 points [13]. Once the calibration has been completed, any
(z, y) coordinate pair in the table coordinate frame can be
transformed into robot coordinates (X, Y, Z) by multiplying
by the transformation matrix (7).

E. Grasping Food Items

To properly grasp the food item with the robot’s two-
finger gripper, we define a grasp pose. In a recent study,
Gallenberger et al. found that grasping long, slender food
items toward one end rather than in the center made it
easier for people to bite the food item [14]. Therefore, we
defined the grasp point as halfway between the centroid
and the bottom edge of the food item. To find the grasp
point, we first compute the rectangle with minimum area

Fig. 3. The depth camera is mounted to the robot’s wrist. A calibration is
performed to describe the camera coordinates C' in the robot’s coordinate
frame R.

that circumscribes the food item’s segmentation mask using
the OpenCV function minAreaRect (). Once the rectangle
has been obtained, it is trivial to compute the grasp point.
The angle that the long axis of the rectangle makes with the
u-axis of the camera frame defines the rotation angle. The
grasp point and the rotation angle are transformed to the
robot’s frame using the methods described in section III-D
(Fig. 4).

F. System Operation and Human-Machine Interface

1) Overview: We used a 15.6” monitor to display a
custom GUI developed using Qt Creator and QML (The QT
Company; Espoo, Finland). The GUI primarily displays the
output from the depth camera’s RGB data stream overlaid
with custom graphics produced by OpenCV (Fig. 5). When
food items are detected, the GUI draws bounding boxes
around each food item. The user is then responsible for
selecting a food item with their eye movements. Once
selected, the robot acquires the food item. The user opens
their mouth to trigger the food item transfer. The robot then
slowly approaches the user’s mouth and releases the food
item. This process is repeated for all the food items on the
plate.

2) Food Item Selection: Mounted on the bottom of the
monitor is a Tobii Eye tracker. We used Talon, a hands-free
input replacement program to interface with the eye tracker
[15]. Talon’s controlMouse () program allows the user to
control a mouse cursor with their eye and head movements.
Instead of a traditional mouse cursor, we displayed a custom,
interactive cursor. When the cursor remains stationary over
a selectable item for a duration, or dwell time, the cursor’s
interior changes color in a rotational sweeping motion similar
to a radar scanner. When the animation is finished and the
cursor is “filled up”, the target food item is selected. In this
way, the user receives feedback for when the system makes
a selection and allows time for the user to stop the selection
process if they wish.

Fig. 4. The grasp position (yellow star) is defined as the 3D location of
the point halfway between the centroid and the bottom center of the food
item. The grasp angle (blue arrow) is defined as the angle the long side of
the rectangle makes with the u-axis of the camera frame.



Fig. 5. Screenshot of the Item Selection screen on the GUI. Each food
item is assigned a number. The participant moves their eyes to select a food
item chosen at random. After a dwell time, the item is selected.

The cursor only animates when it is stationary within
the bounds of a selectable item. For example, when the
user directs their gaze to a food item, the bounding box is
highlighted, indicating the item is selectable. If the cursor
remains stationary in the bounding box for a dwell time (1
second), the cursor animation triggers, and the food item
is selected. We found that this combination of user input
and visual feedback was an appropriate trade-off between
autonomy and control (Fig. 5).

3) Food Item Acquisition: Once the food item has been
selected, the robot computes the grasp pose using the meth-
ods described in section III-E. As the robot control was not
the primary focus of this proof-of-concept, we simply used
Bazter’s built-in Cartesian endpoint controllers to acquire the
food items with the computed grasp pose.

4) Food Item Transfer and Facial Keypoint Detec-
tion: To detect the user’s facial keypoints, we used the
face-alignment python package [16]. This package
detects 60 facial landmarks, 12 of which belong to the mouth.
We fit an ellipse to these 12 landmarks to detect when the
mouth was open versus closed, set to a comfortable value for
each participant (Fig. 6). When the user opens their mouth,
the robot approaches and releases the food item after a delay
of 1.5 seconds [14].

G. Evaluation

We had four able-bodied individuals (2 Male, 2 Female;
24-26 years old) and one individual (Male, 40 years old)
with a C4 level spinal cord injury evaluate the system. We
recorded success rates and task times for each participant.
The SCI participant completed the System Usability Scale
(SUS), the NASA Task Load Index (TLX), and a custom,
post-study survey to qualitatively asses the system [17], [18].
For safety, the food item transfer position was defined before
data collection to ensure no collisions with the participant.
Experiment protocol was reviewed and approved by the
Cleveland State Institutional Review Board (IRB #FY2021-
272).

Fig. 6.  Visualization of mouth detection. Facial landmarks and ellipse
are shown in red for when the mouth is closed and green when the mouth
is open. Opening the mouth triggers the robot to begin the item transfer
sequence.

For the duration of the study, the participant was seated in
a powered wheelchair at a table with the robot across from
them (Fig. 7). A plate of 6 food items was placed on the
table, two of each carrot, celery, and pretzel. The food items
were randomly arranged on the plate and sparsely distributed
to simplify grasping. The monitor was mounted on the table
to the participant’s right. The participant performed a 30-
second eye tracker calibration and was allowed 5 minutes
to get acclimated to controlling the cursor with their eyes
and selecting options on the GUI. The monitor displayed
bounding boxes around the food items, which were numbered
from 1 to 6. A message was displayed on the monitor
prompting the participant to select a food item in a random
order (Fig. 5). After the food item was selected, the robot
reached for and grasped the food item. Then, the participant
was prompted to open their mouth when they were ready
to accept the food item. Once triggered, the robot slowly
approached the participant’s mouth and released the food
item. This process was repeated for each food item on the
plate. The process of selecting, acquiring, and delivering a
food item was considered one trial.

Each participant performed approximately 60 trials. If the
participant was able to accept the food item without dropping
it, the trial was considered successful. If not, the trial was
unsuccessful and the reason for the failure was recorded.

IV. RESULTS
A. Success Rates and Task Times

On average, we observed an overall success rate of 89.1%,
meaning the participant was able to eat the food item the
robot acquired. Out of the 270 total attempted trials, 22
carrots, 5 celery, and 2 pretzels were unsuccessfully acquired.
All of the able-bodied participants displayed a selection
success rate of 100%, meaning, they used their eye move-
ments to select the indicated food item in every instance.
Interestingly, the SCI participant selected the correct item
only 75% of the time. In the post-study survey, he mentioned
that he did not pay much attention to the instructions on the
monitor, rather, focusing more of his attention on the robot
as it was moving. Therefore, we do not believe that the lower
selection success rate was due to an inability to operate the
eye tracking system, but rather a priority of attention focus.



Fig. 7. Experimental Setup. The participant selects the desired food item
with their eye movements. The robot then acquires, delivers, and transfers
the food item to the participant.

Although this situation is not relevant in application, it is an
interesting observation and may require further investigation
in future studies.

The participants were able to open their mouths to trigger
the release of the food item in every instance. The aver-
age trial completion time, from when the participant was
prompted to select an item, to when the food item was
released, was 31.44+2.4 seconds. Of this, 25.9 seconds, or
82% of the total time, was occupied by robot movement.
This means that, on average, user input was required for 5.5
seconds per food item.

B. Post-Study Evaluation

In addition to measuring success rates and task times, we
gathered feedback from the SCI participant on his experience
with the system directly following data collection. The SUS
assesses the participant’s perceived usefulness of the system,
while the TLX assesses the participant’s self-reported level
of exertion required to complete the task. The purpose of
the custom post-study survey was to gather open-ended,
subjective feedback and criticism from the participant about
their experience with the system. The participant gave scores
of 90/100 and 8.3/100 on the SUS and TLX, respectively.
On the SUS, a higher number is preferred and a score above
80 is considered excellent. On the TLX, a lower number is
preferred and represents minimal effort required to complete
the task. These results and the outcomes of the post-study
survey are discussed further in section V-B.

V. DISCUSSION
A. System Performance

Ideally, the success rate of our RAF system would be
100%. However, all of the failed trials resulted from improper
grasping of the food items, with the majority being carrots.
We believe this is due in part to a lack of effective friction be-
tween the food item and the gripper as well as slight errors in
the localization of the food items. The rounded, smooth, and
sometimes slippery surface of the carrots and celery made
it difficult for the robot’s gripper to maintain an effective

grasp. This issue was exacerbated if the depth estimation was
imprecise. For this reason, we believe improper grasping to
be the primary source of success rate error in this study.

While they do not report success rate for an entire feeding
trial, the Assistive Dextrous Arm from the Personal Robotics
Lab demonstrated an acquisition success rate of 70% [14].
Because all of our failure points occurred during acquisition
or transfer, this is a relatively appropriate comparison. That
being said, the experiment that Gallenberger et al. presented
included a greater number of food item classes, as well
as the more complex task of skewering food items with
a fork. Our study was intentionally designed to limit the
complexity of the grasping task to devote more emphasis on
the communication interface and overall feeding task.

The average task time per food item was 31.4 seconds,
with 82% of this time occupied by robot movement, and
5.5 seconds required for user input. The literature does
not present an evaluation of task times, however the SCI
participant mentioned that the user input mechanism and
amount of time required was acceptable. He mentioned that it
would be preferable to shorten the overall task time, or better
yet, to have control over the movement speed of the robot.
This could be addressed in future studies by including a
different form-factor robot more appropriately designed for a
feeding task, as well as trajectory optimization for movement
duration.

B. SCI Participant Feedback

The SCI participant scored the RAF system highly on the
SUS. He mentioned that if it was able to help him with even
one feeding task, he would be willing use it. He did note that
if food items were consistently dropped, it may be enough
for him to abandon the system. However, because the food
items included in this study were unlikely to cause a mess
compared to food like sandwiches, soup, etc., he said the
failures were less of a concern.

In addition to the SUS, the SCI participant reported a min-
imal effort required to operate the RAF system, as indicated
by his score on the TLX. He mentioned the most difficult
aspect for him was neck strain due to the placement of the
tablet monitor. This could be mitigated by a more appropriate
mounting mechanism customized to the individual.

In the post-study interview, the participant mentioned that
he felt the system had the potential to address his feeding
needs. He mentioned that the eye-tracking and mouth trigger
input mechanisms were appropriate, but suggested giving
the user control over the robot’s speed. Other tasks he
envisioned the system performing were holding poker cards,
brushing his teeth, and cutting his hair. Finally, he remarked
that caregivers rely heavily on non-verbal cues such as eye
movement and head nods to know when and how to feed
him. He also mentioned that caregivers tend to take food
away from him before he has a chance to complete a bite.
Future research should investigate the complex relationship
between the caregiver and the individual during food item
hand off.



C. Limitations

One apparent limitation of the current proof-of-concept
demonstration was the intentional choice of easy-to-grasp
food items. The primary goal of this work was to understand
the challenges of feeding from the perspective of an individ-
ual with an SCI, and how to best develop an RAF system to
meet these needs. By gathering feedback from participants
early in the development process, we hope to drive future
design decisions toward addressing the real needs of people
who have difficulty feeding themselves.

Another limitation of this work was the small sample size.
Having able-bodied individuals test the system was purely for
task repetitions to gather a better assessment of the system’s
grasping performance. We believe the real value comes
from having members of the beneficiary community test the
system and provide feedback on its usefulness. Future studies
should include large-scale qualitative assessments outlining
the current feeding challenges of the SCI community and
how best to address them with assistive feeding technologies.

Finally, the task scope of the current study was limited.
We included only four classes in our object detection data
set, with a consistent background. Future work will need
to include a much larger data set of food items, methods
for identifying previously unseen food items, and more
sophisticated grasping and motion planning algorithms for
handling complex food items in cluttered environments.

D. Implications and Future Directions

Based on the grasping performance of the system and the
feedback gathered from the SCI participant in this study, we
have identified three key areas of improvement:

1) Portability: The system should be entirely contained
on a powered wheelchair. The robot and gripper should be
more appropriately designed for feeding tasks. Ideally, the
system should be scale-able to other ADLs as well. Recent
work in this area can be found in [19].

2) Robust Object Detection and Grasp Planning: In a
home environment, the system will undoubtedly encounter
unknown objects. It must be capable of generalizing grasping
strategies across various utensils and food items. Recent
work in this area can be found in [20], [21].

3) Human-in-the-loop Adaptive Learning: As noted by
our SCI participant, people will inevitably have different
preferences and eating habits. By including the user in the
learning process, they can train their own system to behave
according to their specific needs, updating parameters such
as robot speed, bite size, dwell time, bite transfer delay, etc.
Recent work in this area can be found in [22], [23].

VI. CONCLUSION

In this work, we present a proof-of-concept demonstration
for a robot-assisted feeding system for individuals with
movement disorders. While the current task scope is limited,
we consider the initial performance to be promising and
justifies continued research in this area. We believe including
the beneficiary community in the design process is critical
to developing assistive technologies. We hope that by using

feedback from individuals with SCI to drive design decisions,
we may develop an RAF system that more closely aligns with
the needs of people who have difficulty feeding themselves.
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